

Extracellular Protein Targeted Degradation with Novel ATACs (ASGPR Targeting Chimeras)

9th Drug Discovery Strategic Summit (DDSS)

May 9 - 10, 2022, Boston, MA

What If We Could Degrade Extracellular Proteins?

- First generation degraders target intracellular proteins
- Yet almost 40% of human proteins are extracellular or membrane-bound
- Multiple classes and hundreds with established role in pathogenesis of diseases
- Degradation of extracellular proteins would dramatically expand the "degradome"

Novel Applications for ATAC Extracellular Protein Degraders

	Drug Historically Undruggable Targets	 Leverage ligands that bind but do not have – or need to have – functional activity to degrade previously undruggable targets
	Degrade Very High Concentration Proteins	 Degrade very high concentration proteins that would otherwise require infeasibly or unattractively large doses of neutralizing mAb
	Selectively Target Relevant Proteins	 Degrade specific protein types or subtypes responsible for disease, while leaving other related proteins unaffected
Ő	Rapid Onset of Action	 Rapidly degrade pathogenic protein to drive faster clinical benefit for patients in crisis or in acute need
	Remove Pathogenic Complexes	 Degrade protein complexes or the necessary component elements of protein complexes causing diseases
	Oral Degraders	 Use small molecule ASGPR ligands + small molecule protein binders to create oral ATACs for proteins currently targeted by injectable biologics

ASGPR Used in Body's Natural Cellular Degradation Machinery

- ASGPR used in natural cellular machinery for extracellular degradation (like E3 ligases in intracellular degradation)
- Cell surface receptor mediates the endocytosis and degradation of various endogenous glycoproteins in endolysosome
- Highly expressed on hepatocytes (~1M receptors per cell in humans)
- Endocytosed and recycled from endosome back to plasma membrane every ~15 minutes

Unique Platform for Designing, Building, and Developing ATACs

ATACs Harness ASGPR Pathway to Degrade Extracellular Proteins

- Bi-functional molecules comprising ASGPR binder, optimized linker, and binder to a target protein
- Shuttle target protein from circulation to endolysosome for degradation
- Modular: optimized ASGPR binders and linkers deployed in synthesis of ATACs with diverse protein targeting binders

Proprietary ASGPR Ligands with Significantly Improved Affinity

- Novel high affinity monosaccharides with superior properties versus historical GalNAc analogs
- Synthesized hundreds of monosaccharide ligands
- + >100 ligands with $K_D \leq$ 1,000 nM; ~40 ligands $K_D \leq$ 100 nM
- >20 X-ray structures of ASGPR/ligand complexes
- Approximately 2,000-fold increase vs. GalNAc & >60-fold increase in affinity vs. bicyclic bridged ketal

	HO O OH HO OH OH				
Compound ID	GalNAc	bicyclic bridged ketal*	AVI-1	AVI-2	AVI-3
ASGPR SPR Binding: K _D (nM)	52,800	1,650	720	210	24
Increase in Affinity (X Fold)	1	32	73	251	2200

*Liras, S. et al. U.S. Patent 9,340,553, May 17, 2016 (priority May 19, 2014)

Novel ASGPR Chemistry Enables Differentiated ATAC Design

• Avilar's novel monosaccharides^{*} enable structurally & functionally differentiated ATAC degraders

*Saulnier, M. G. et. al. ASGPR-Binding Compounds for the Degradation of Extracellular Proteins WO2021155317 (2021)

Key Stage Gates for ATAC Discovery and Translation

- Direct measure of ATAC-Target Protein and ATAC-ASGPR binary complex formation
- Surface plasmon resonance (SPR) measures ATAC affinity and kinetics

Cellular Uptake

Ternary Complex Formation &

- Direct measure of ASGPR-ATAC-Target Protein ternary complex formation (TCF) and uptake in hepatocytes
- Fluorescent intensity measurement in the surface and within the cell
- Uptake/degradation in hepatocyte endolysosome measured by Western Blot (data not shown)

In Vivo Degradation **Degradation of Extracellular Protein Following Single Dose** ATAC (Rat Model) 60-% protein remaining 40-20-0-2 6 20

- ATAC dose (mg/kg)
- Protein degradation measured 4 hrs after single dose ATAC injection
- Protein detection in plasma by ELISA
- Illustrative example from multiple rat, guinea pig, NHP studies showing ATAC mediated *in vivo* degradation

Platform PoC Studies with ATACs Targeting IgG

- ATACs designed to target and degrade IgG
 - Second most abundant protein
 - Most common type of antibody
- IgG properties
 - High plasma concentration: 1.06 g/kg total body IgG = 74.2 g total in 70 kg human = 508 μ mol**
 - Long half-life: $t_{1/2} = 21$ days
 - Resynthesis: 32 mg/kg/day = 2.2 g/subject/day = 15 μmol/day; ~3% of total body IgG/day
 - MW ~146 kDa
- IgG biology
 - Binds cell surface receptors on many cell types to trigger phagocytosis or cellular cytotoxicity*

*Nezlin, The Immunoglobulins (1998), ** Waldmann et.al. Prog. Allergy (1969), ***Kratz et al. J. Control. Release (2012)

IgG-ATAC Function Dependent on ASGPR Binding

37°C for 6 h. Cells were washed and surface + internal IgG was measured by fluorescence microscopy (ratio of IgG+ cells/total cells)

IgG Degradation in Rat Hepatocytes Requires Lysosomal Function

- Uptake of hIgG requires presence of IgG-ATAC
 - hIgG taken up over time into HepG2 cells in presence of ATAC-1 (IgG, lanes 1-4), but not in its absence (DMSO, lane 5)
 - Non-specific IgG antibody-reactive background bands observed in HepG2 cells in absence of hIgG (lane 6)
- IgG degradation after uptake is dependent on endolysosomal function
 - IgG degradation fragment appears ~ 2 h after IgG uptake begins (lane 4, red box)
 - Pre-treatment with lysosomal function inhibitor Bafilomycin A blocks endolysosomal pathway progression (confirmed by endosomal marker LC3 accumulation, blue box)
 - Baf A treatment prevents IgG degradation (no IgG degradation fragment after 2 h with IgG and ATAC-1, compare lanes 4 and 7, red box)
 - IgG degradation kinetics consistent in HepG2 cells and rat hepatocytes

 Cells are washed, lysed and IgG is detected by western blot with anti-IgG antibodies. Actin is a protein loading control. LC3 is a marker for endolysosomal pathway function.

Platform PoC Studies with ATACs Targeting $\text{TNF}\alpha$

- ATACs designed to target and degrade $\mathsf{TNF}\alpha$
- Small molecule ligand used as protein binder
- TNF α properties
 - Low plasma concentration and short half-life extracellular protein
 - 2-20 pg/mL in healthy people and up to 5000 pg/mL in sepsis patients' serum*
 - Soluble TNF α MW: 17 kDa, and assembles as a 51 kDa trimer
- TNF α biology
 - Homotrimeric cytokine that binds two receptors, TNFR1 and TNFR2
 - Engagement with TNFR1 and TNFR2 initiates signaling cascades that result in inflammatory responses and control of apoptosis

*Damas P. et. al. Crit. Care Med. 1989. Eck, M.J. et. al. J Biol Chem 1989

$\mathsf{TNF}\alpha$ ATAC Binary and Ternary Complex Formation Confirmed

Time-Dependent Ternary Complex Formation of TNF α , ATAC-4 and ASGPR

ATAC-Mediated TNF α Uptake and Degradation in HepG2 Cells

- Uptake of TNF $\!\alpha$ mediated by ATAC-4 is observed in HepG2 cells
- Significant uptake of $\mathsf{TNF}\alpha$ requires the presence of an ATAC
- ASGPR is required to achieve significant ATAC-medicated TNF α uptake in HepG2 cells (no uptake in ASGPR knock-out cells)

- Degradation of TNF α requires the presence of ATAC-4
- Half-life of TNF α degradation upon uptake by ASGPR is 15-30 min
- TNF α is fully degraded after 4h

Study design: 0.5 μ M ATAC-4 and 0.5 μ M human TNF α were pre-incubated for 18h to allow formation of stable complexes. ATAC-4/ TNF α complexes or TNF α alone were incubated for 0-3h on HepG2 cells. Cells were washed and lysed for Western blot analysis. TNF α and actin were detected with anti-TNF α and anti-actin antibodies, respectively, and 800cw-conjugated secondary antibody.

Study design: ATAC-4 and human TNF α were pre-incubated for 18h to allow formation of binary complexes. ATAC-4 / TNF α complexes or TNF α alone were incubated for 2h on HepG2 cells. Cells were washed, incubated with cell media without reagents for 0-24h and subsequently washed and lysed for Western blot analysis. TNF α and actin were detected with anti-TNF α and anti-actin antibodies, respectively, and 800cw-conjugated secondary antibody.

Summary

- Avilar created a unique platform for designing and creating ATACs as novel extracellular protein degraders
 - Library of proprietary, small molecule, high affinity ASGPR ligands
 - Optimized linkers, customized PK/PD modeling, and proteome mapping
- To exemplify our ATAC platform, we designed ATAC molecules to target and degrade two extracellular proteins with different concentration and kinetic properties:
 - IgG: high plasma concentration and long half-life
 - \circ TNF α : low plasma concentration and short half-life
- For ATAC platform POC, we demonstrated *in vitro* ligand binding, ternary complex formation, cellular uptake, and degradation of IgG and TNF α

Extracellular Protein Targeted Degradation with Novel ATACs (ASGPR Targeting Chimeras)

9th Drug Discovery Strategic Summit (DDSS)

May 9 - 10, 2022, Boston, MA