

Targeted Degradation of Extracellular Proteins with ATACs (ASGPR Targeting Chimeras)

5th Annual Targeted Protein Degradation Summit

> Boston, MA October 28, 2022

> > © AVILAR THERAPEUTICS 2022

Universe of Extracellular and Membrane Proteins for Degradation

- First generation degraders target intracellular proteins
- Yet almost 40% of human proteins are extracellular (EC) or membrane-bound
- Multiple classes and hundreds with established role in pathogenesis of diseases
- Degradation of extracellular proteins would dramatically expand the "degradome"
- Avilar initial focus: validated yet poorly served EC targets where ATACs have advantage

Novel Applications for ATAC Extracellular Protein Degraders

	Drug Historically Undruggable Targets	 Leverage ligands that bind but do not have – or need to have – functional activity to degrade previously undruggable targets
	Degrade Very High Concentration Proteins	 Degrade very high concentration proteins that would otherwise require infeasibly or unattractively large doses of neutralizing mAb
	Selectively Target Relevant Proteins	 Degrade specific protein classes or subclasses responsible for disease, while leaving other related proteins unaffected
Ö	Rapid Onset of Action	 Rapidly degrade pathogenic protein to drive faster clinical benefit for patients in crisis or in acute need
	Remove Pathogenic Complexes	 Degrade protein complexes or necessary component elements of protein complexes causing diseases
	Oral Degraders	 Use small molecule ASGPR ligands + small molecule protein binders to create oral ATACs for proteins currently targeted by injectable biologics

ASGPR Role in Body's Natural Cellular Degradation Machinery

- Cell surface receptor and part of natural cellular machinery for extracellular degradation (like E3 ligases in intracellular degradation)
- Mediates the endocytosis and degradation of various endogenous glycoproteins in endolysosome
- Highly expressed on hepatocytes (~1M receptors per cell in humans)
- Endocytosed and recycled from endosome back to plasma membrane every ~15 minutes

ATACs Harness ASGPR Pathway to Degrade Extracellular Proteins

- Bi-functional molecules comprising ASGPR binder, specialized linker, and binder to a target protein
- Shuttle target protein from circulation to endolysosome for degradation
- Modular: proprietary ASGPR binders and linkers deployed in synthesis of ATACs with diverse protein targeting binders

Proprietary ASGPR Ligands with Significantly Improved Affinity

ATAC PoC Studies Demonstrating Degradation of IgG

- IgG is the most common antibody; 2nd most abundant plasma protein
 - High plasma concentration: 1.06 g/kg total body IgG or 74.2 g in 70 kg human
 - Long half life: 21 days in humans
 - Resynthesis rate: 32 mg/kg/day; ~3% of total IgG/day
- ATACs synthesized using a peptide ligand for IgG

- Studies completed with ATACs targeting IgG:
 - \circ $\,$ Monodentate and bidentate ATACs, dosed IV and SQ $\,$
 - Single and repeat dose in vivo studies
 - MOA elucidation studies

Monodentate ATAC-77 Binds IgG and ASGPR In Vitro

• Binary complexes: ATAC-77 binding to human IgG and ASGPR measured by SPR

Binding to human IgG Fc

Binding to human ASGPR

• Ternary complex formation and cellular uptake into HepG2 cells measured by flow

ATAC-77 Has Differential Binding Affinities to IgG Subclasses

- Four IgG subclasses (IgG1, 2, 3, and 4) exist in humans
 - IgG1 is most abundant (~60% of total IgG*)
- Each IgG subclass binding affinity was tested separately by SPR with both fulllength and Fc IgG
- ATAC-77 shows potent in vitro binding affinities to Fc IgG1,2 and 4 and weak binding to IgG3
- Similar profile was obtained for full length IgG

Binding to human Fc IgG1, IgG2, IgG3, and IgG4

*Vidarsson 2014, Mayo Clinic 2022

ATAC-77 Degrades Human IgG in Rat PK/PD Model

ATAC-77 Plasma Exposure

• Rats injected with 200 mg/kg of human IgG IV at T-1hr (ATAC-77 does not bind to rat IgG)

ATAC-77 Degradation of hIgG

- ATAC-77 effectively degrades human IgG from rat plasma in a dose-dependent manner
- SQ dose results in degradation of ${\sim}22~\mu M$ IgG in 4 hrs despite ${\sim}2.3X$ lower AUC than IV dose

Expert Team of Biopharma Executives and R&D Leaders

Daniel Grau, MPhil CEO & President

Adam Muzikant, PhD **Chief Business Officer**

Lisa Molz, PhD VP, Research

Srinivasa Karra, PhD **Director, Medicinal Chemistry**

KLEXION Lilly Janssen flexION

Effie Tozzo, PhD

Chief Scientific Officer

Jason Wiles, PhD VP, Discovery & Preclin Sciences

Gejing Deng, PhD Sr Director, Biophysics

Hu Liu, PhD

Director, Medicinal Chemistry

(DA PER)

Paul Muir, PhD

Sr Manager, Strategy & Portfolio

SERONO

Chief Development Officer

Alison Davis, PhD Director, Biology

Karen Goulet Office Manager

ACHILLION

Alkermes

SANOFI GENZYME 🎝

sosei HEPTARES

